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A numerical method is presented for calculating the unsteady laminar flow over a circular 
cylinder started impulsively from rest. The governing boundary-layer equations are solved 
using the method of series truncation and accurate results have been obtained for larger values 
of time than any other Eulerian coordinate method. The variation of the vorticity. 
displacement thickness and displacement velocity are presented. These results. in general. 
confirm the presence of a singularity at a given time. The value of this time agrees with the 
Lagrangian coordinate method of Van Dommelen and Shen but does not agree with those of 
Wang, Telionis and Tsahalis. Further. the results tend to support the structure of the 
singularity as proposed by van Dommelen and Shen. 

In the past few years research on the problem of unsteady boundary-layer 
separation has been the subject of several papers and colloquia. Some of the “results” 
presented are contradictory and controversial. 

In this paper we shall consider the laminar flow in the boundary layer on a circular 
cylinder which is impulsively started from rest. It is well known that in the steady- 
state solution of the boundary-layer equations there is a singularity at an angle of 
about 104.5” from the front stagnation point of the cylinder, see Terrill 11 1. This type 
of singularity is of the Goldstein-Stewartson type 12-41 and beyond this singularity 
no steady-state solution exists. 

Proudman and Johnson I.5 1 and Robins and Howarth 16 1 established that at the 
rear stagnation point the boundary-layer thickness does not approach a steady-state 
limit at large times but instead grows exponentially with time. 

The early numerical calculations of the full time-dependent boundary-layer 
equations by Belcher et al. 171 and Collins and Dennis 18, 9 ] showed no sign of 
anything untowards occurring up to non-dimensional times of r = 1 and 1.25, respec- 
tively. Here the time has been non-dimensionalised with respect to a/U. However, a 
numerical investigation by Telionis and Tsahalis IlO] suggested that a singularity 
develops when r z 0.65 at a station 0 z 140° from the front stagnation point of the 
cylinder. They do, however, state that “the singular behaviour is somewhat 
confused.” Cebeci Ill], using Keller’s two-point finite-difference method, made a 
very careful calculation but failed to observe this singularity and found that the 
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solution was smooth for 7 ( 1.4. This naturally lead Cebeci to suggest that the 
solution of the boundary-layer equations remain smooth for all finite time, even 
though its thickness is likely to increase exponentially towards the rear of the 
cylinder. 

The complex flow development observed in the experiments of Tietjens ( 12 1 and 
Bouard and Coutanceau I13 1 suggest that this postulate is too simple and the 
numerical results of Van Dommelen and Shen 114, 15 I confirm this. They use 
Lagrangian boundary-layer coordinates and numerically “prove” that the 
spontaneous generation of a singularity does occur at a time r z 1.50, 19 z 111.0’ and 
moves upstream with a velocity of 0.52 that of the cylinder. Using an Eulerian finite- 
difference scheme Wang [ 16, 17 1 reports some quantitative differences from Van 
Dommelen and Shen’s results, namely, in the displacement thickness for r > I and he 
also finds a singularity at r z 1.4. 

Van Dommelen and Shen [ 15 ] clearly demonstrate in their Fig. 2 the upper limits 
of the validity of the results obtained by Belcher et al. and Cebeci and Wang because 
of the angular mesh size used in these calculations. Further Van Dommelen and Shen 
[ 15 I discuss the analytical structure of the singularity and their numerical results tend 
to confirm this theory. Cowley I18 1 using a series truncation method in the angular 
direction and in time with various Pade approximations could obtain accurate results 
up to T = 1.4. His results qualitatively confirm the results of Van Dommelen and 
Shen. Cebeci I19 1 has extended his earlier work Ill] and his calculations tend to 
confirm some of the results as obtained by Van Dommelen and Shen I15 1. 

One of the purposes of this paper is to use an Eulerian coordinate system and 
numerically calculate accurately results to a value of 7 as large as possible. Because 
of the difficulties with the angular mesh size described above it was decided to use the 
series truncation method as described by Collins and Dennis 18. 9 I. 

EQUATIONS 

Polar coordinates are used with the origin at the centre of the cylinder of radius a. 
The cylinder is suddenly started from rest with velocity U in the direction 8 = 0 and 
we work in terms of the dimensionless radial and transverse components of velocity 
(u, u) obtained by dividing the corresponding dimensionless components by U. If the 
vorticity is non-dimensionalised with respect to U/a to give i and the time with 
respect to a/U to give 7 then the Navier-Stokes equations can be written, in modified 
polar coordinates (r, I!?), where < = In(r/a), in the form (see 19 I) 
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where 

u = exp(-0 z, 
.e 

v = - exp(-<) -$F, 

and R = 2Ua/v is the Reynolds number. 
Equations (1) and (2) have to be solved subject to the initial and boundary con- 

ditions 

i- 0, as r+co, t > 0, 

ly=<=o, on 19 = 0” and 180°, < > 0, r < 0. 

ly=(iO, all c and 8, r < 0. 

In the early development of the flow a boundary layer of thickness proportional to 
(t/R)“’ forms on the cylinder and therefore the coordinate < normal to the cylinder is 
transformed by 

(= kx, k = 2(2t/R)‘? 

This leads to the following scalings for the dependent variables 

(5) 

yl=kY, < = o/k. (6) 

We shall employ the series truncation method, as described by Collins and Dennis 
[91, to this problem. Thus we take the following forms of solution in order to satisfy 
some of the boundary conditions (4): 

y= c F,(x, T) sin n0, (7) 
n- I 
a 

0 = x G,(x, T) sin no. (8) 
n=, 

In practice the terms in expressions (7) and (8) must be truncated by setting iden- 
tically zero all terms with a subscript n greater than a prescribed integer, L, say. This 
defines a truncation of order L. Thus all functions that occur later with a subscript 
greater than L will be set identically zero. 

Substituting expressions (5), (6), (7) and (8) into Eqs. (1) and (2) gives 

PF” 
ax2 

- n2k2F, = exp(2kx) G,, (9) 
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42 aGn a2G 
- = exp(-2kx) $ 

C3G 

ar 
+ (2x + 4nrF,, exp(-2kx)) 2 

I 
aF2, + 2 + exp(-2kx) 2ns- - 

3X 
n2k2 

i I 
G,, + 4s exp(-2kx) S,, , ( IO) 

where 
I, 

sgn(m - n) $ G,,,( 
’ I 

and j = /m - n 1 and sgn(m - n) denotes the sign of m - n, with sgn(0) = 0. 
Using (7) and (8) the boundary conditions (4) become 

F =%‘=O 
n 

Bx ’ On 
x = 0. 5 > 0, (lla) 

r 

k exp(-kx) F, --t S,,, exp(-kx) 2 --f 6,, as x--t co, r>O, (llb) 

where 6, = 1, 6, = 0 (n = 2, 3, 4 ,... ), 

G, -+ 0, as x--t co, r > 0. (llc) 

Collins and Dennis 191 found that the use of an integral condition rather than 
condition (1 lb) was easier to implement. Thus if we multiply Eq. (8) by exp(-nx) 
and integrate from x = 0 to x = co we may deduce, using (1 la) and (11 b), that 

jr exp/(2-n)kx}G,dx=26 n ’ (12) 

Making the usual boundary layer approximation, i.e., k = 0, then Eqs. (8) and (9) 
become 

d2F, 
7 = G,, 3 
dX 

(13) 

i3G a2G, 
4s” 

3G aFz,, i =7+(2~+4n~F2,)-$+ )2+2nr-- 
at ax 5-Y \ G,, + 4rS,,, (14) 

and the boundary conditions (1 la), (1 lc) and (12) become 

F,, = g = 0, on x = 0, r > 0, 

G,+0, as x--1 al. r>o, 

ix G,, d,x = 26,. 
“0 

(15) 
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Thus the 2L equations (13) and (14) have to be solved subject to the boundary 
conditions (15). 

One advantage of the series truncation method is that for small values of 7 only a 
few terms in the series (7) and (8) are required. At 7 = 0 only one term is required 
and as 7 increases more and more terms are required in the series. 

Equations (13) and (14) were solved in a similar way to that described by Collins 
and Dennis [9] and hence the details are not presented in full here. Basically Eq. (14) 
is solved using the Crank-Nicolson method and Eq. (13) as an ordinary differential 
equation. After each time step a check was performed to see if the order of the trun- 
cation should be increased. If so this was done up to 7 = 1.25 and the results obtained 
are indistinguishable from those obtained by Collins and Dennis 19 1. However, 
Collins and Dennis reported that “the integration could not be continued beyond 
7 = 1.25.” If no relaxation parameters are used and a time step of A7 = 0.025, near 
7 = 1.25, is employed then the present calculations also terminated at r - 1.25. This 
is probably due to the appearance of the singularity. By using under-relaxation and 
much smaller values of A7 then calculations could be continued to much larger values 
of 7. 

RESULTS 

Table I shows the time mesh size used in the calculations. This shows that very 
small mesh sizes are required for small values of 7 and as s--1 1.5. Several of the time 
step integrations were performed with smaller values of A7 in order to check the 
acuracy but the values as used in Table I were found to give a reasonable accuracy. 
The mesh size taken in the radial direction was fixed at h = 0.05 in all the 
calculations and the infinity condition in x at 10, x,, say. It was found that up to the 
time when the calculations were terminated the choice of x, was sufficiently large 
such that all quantities had reached their asymptotic forms. 

At 7 = 0 only one term in the series truncation is required and as time increases 
more and more terms are required. Extra terms in the truncation were added if 

lmax G,.(x, r)l > lo-‘, 

then L = L + 1 at the next time step for all 7 < 1.25. For 7 > 1.25 the number of 
terms required in the series truncation grows rapidly and the criterion (16) has to be 

TABLE 1 

Time Mesh Size Used in Different Time Intervals 

Time interval 0 ---t 0.005 0.005 + 0.05 0.05 4 1.25 1.25 --) 1.3 1.3 + 
Mesh size 0.000 I 0.00 1 0.025 0.0 1 0.0025 
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TABLE II 

The Order of Series Truncation at Various Times 

Value of 5 0 0.5 1.0 1.25 
Value of L 1 19 21 45 

abandoned. In Table II the order of truncation at various values of time are 
presented. Beyond 7 = 1.25 it was decided to complete three calculations keeping the 
value of L fixed. These values of L were 45, 90 and 180. In the case of L = 45 
calculations were performed up to r = 1.55, whereas for L = 90 and 180 the 
calculations were terminated at r = 1.47. The calculations were terminated at these 
values of t because of the excessive amount of computing time required. Also the 
“results” at these values of 7 had become too inaccurate because of the order of the 
series truncation. In all three calculations the numerical method could be integraded 
through the point r = 1.4-the point where Wang suggests the equations become 
singular. Further when L = 45 the integrations proceed through the point 7 = 1.5- 
the point where Van Dommelen and Shen suggest that the equations become singular. 
Figure 1 shows the variation of 

R -"'[(O, 8, T)= ' c G,(O. 7) sin n0 
2(2r)"2 ,r, (17) 

FIG. 

state. 
1. Variation of R “‘i over the surface of the cylinder at various values of r and at steady 
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as a function of the angle 0 for various values of T. This quantity is a measure of R I” 
times the local dimensionless coefficient of skin friction on the surface of the cylinder. 
The results are very similar for the three different orders of truncation up to r = 1.47 
and with L = 45 there are no signs of any irregularities up to 7 = 1.55. Thus Fig. 1 
shows the results with L = 45. Also presented is the steady-state boundary-layer 
solution which has been obtained using a method similar to that described by Terrill 
[ 11. It is seen that this steady boundary-layer solution is being approached as r 
increases. (It is well known that the steady-state numerical solution does not describe 
the observed flows.) The fact that the vorticity does not become singular has been 
previously observed [ 14, 15, 181. This evolution of the wall shear agrees very well 
with the results of Cebeci [ 191 up to r= 1.375. 

Van Dommelen and Shen [ 14, 15 1 found that the displacement thickness 

6*(8, T) = 2(2r)“’ Jo% (1 - g/(2 sin 8)) dx (18) 

became singular near r = 1.5. Thus d6*/d8 will also become singular. In Fig. 2 the 
position at which 6” and d6*/dfJ are greatest is plotted as a function of r. It is seen 
that the variation of both these quantities is approximately linear with time. 
Extrapolating the results suggests that a singularity at r = 1.50 and 8- 111.2” 
develops. Further the speed of transmission of the maximum value of 6* is 0.5 1 U, 
approximately. These results compare very well with those of Van Dommelen and 
Shen, namely, z = 1.50, B = 111.0” and speed 0.52 U. 

FIG. 2. Variation of the positionof maximum 6* (O), S8*/SS (A) and u* (A) at various values of T. 
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If 6* becomes singular then the vertical velocity at the outer edge of the boundary 
layer, which is given by 

(19) 

will also become singular. Thus we define the viscous displacement velocity U* by 

u * (x,, r, 13) = R “*(u(x,, r, f?) - 2kx cos 19). (20) 

The position of the maximum value of the displacement velocity u*, &&,, say, as a 
function of time is given in Fig. 2. Not surprisingly this position coincides with the 
position of the maximum value of d6*/dt9. 

Assuming that a singularity is being formed at r = 1.50, we plot in Fig. 3 the 
variation of In(u&,) with -ln(1.5 - r). It is seen that this is approximately linear 
with slope 1.75, i.e., 

7.5 

6.5 

Iniu*,,,) 

5.5 

J 

cu a (1.5 -r)-I.". (21) 

10.0 

8.0 

6.0 

4.0 
0 0.8 1.6 2.4 3.2 4.0 

-In(l.5-z) 

FIG. 3. Variation of lin(u,&,) (A) and ln((a6*/&9),,,) (0) as a function of -ln(l.5 - r). 
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Also in Fig. 3 (d6*/df9),,, is plotted as a function of - ln( 1.5 - r) and again it is 
seen to be approximately linear and that 

a (1.5 -r)- ‘.75. (22) 

The variations of u&, and (d6*/dB),,, as given by expressions (21) and (22) 
agree with the theory of Van Dommelen and Shen. Other results can be presented 
which support the theory of the singularity as described by Van Dommelen and Shen, 
e.g., Van Dommelen and Shen predict that S,Z,!& a (1.5 - r) -“4 near t = 1.5 and the 
results of the calculations performed here confirm this behaviour for r ;L 1.4. 

It should be noted that Van Dommelen and Shen argue that quantitative 
verification of their structure requires that (1.5 - ,)‘I4 should be small, although of 
course this does not mean that qualitative agreement cannot exist for various quan- 
tities as has been obtained in this paper. 

CONCLUSIONS 

Using an Eulerian coordinate system we have illustrated in this paper that it is 
possible for a singularity to occur at a finite time for the unsteady boundary-layer 
equations. The predicted values of time and position agree with those predicted by 
Van Dommelen and Shen (who used a Lagrangian coordinate system) rather than 
those of Wang [ 16, 171 and Telionis and Tsahalis I10 1 (who used an Eulerian coor- 
dinate system). The small discrepancy in the position of the singularity, 111.2” 
compared with 111.0’ by Van Dommelen and Shen, could be due to the use of a 
mesh size in the radial direction which is too crude-because of the large amount of 
computing time being used it was impossible to perform calculations with an 
appreciably smaller mesh size in the radial direction. 

Further, the numerical results presented here tend to confirm that the nature of the 
singularity is as described by Van Dommelen and Shen. 
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